The Central Limit Theorem

California Standards: 9.0

Students know the central limit theorem and can use it to obtain approximations for probabilities in problems of finite sample spaces in which the probabilities are distributed binomially.

Procedure:

- 1. Cut up four equal size slips and write the values 1, 3, 5, 7 on them and place in a box
- 2. Randomly choose two slips of paper, with replacement
- 3. List all the samples of size n = 2 and calculate the mean of each
- 4. Repeat trial for 5 samples, 10 samples, 20 samples and 30 samples
- 5. Create 4 Relative Frequency Histogram of sampling distribution of \bar{x}

Data and Histogram:

5 Samples

Samples	Sample Mean

10 Samples

Samples	Sample Mean

20 Samples

Samples	Sample Mean

30 Samples

Samples	Sample Mean

Calculation:

5 Samples:		
Sample Mean	Frequency	Relative Frequency
1		
2		
3		
4		
5		
6		
7		

Total:

Mean of sample means:

Standard Deviation of sample means:

10 Samples:

Sample Mean	Frequency	Relative Frequency
1		
2		
3		
4		
5		
6		
7		
	Total:	

Mean of sample means:

Standard Deviation of sample means:

20 Samples:

Sample Mean	Frequency	Relative Frequency
1		
2		
3		
4		
5		
6		
7		
	Total:	

Mean of sample means:

Standard Deviation of sample means:

30 Samples:

Sample Mean	Frequency	Relative Frequency
1		
2		
3		
4		
5		
6		
7		
	Total:	

Mean of sample means:

Standard Deviation of sample means:

Conclusion:

Compare your results with the expected population mean $\mu = 4$, and population standard deviation $\sigma \approx 2.236$.

To verify Central Limit Theorem

$$\mu_{\bar{x}} = \mu$$
 and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$

For 5 samples,

$$\mu_{\bar{x}} - \mu =$$
$$\sigma_{\bar{x}} - \frac{\sigma}{\sqrt{n}} =$$

For 10 samples,

$$\mu_{\bar{x}} - \mu =$$
$$\sigma_{\bar{x}} - \frac{\sigma}{\sqrt{n}} =$$

For 20 samples,

$$\mu_{\bar{x}} - \mu =$$
$$\sigma_{\bar{x}} - \frac{\sigma}{\sqrt{n}} =$$

For 30 samples,

$$\mu_{\bar{x}} - \mu = \\ \sigma_{\bar{x}} - \frac{\sigma}{\sqrt{n}} =$$